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Active Control of Wake/Blade-Row Interaction Noise

Through the Use of Blade Surface Actuators

Kenneth A. Kousen and Joseph M. Verdon

United Technologies Research Center

East Hartford, Connecticut 06108-1049

Summary

This report describes a combined analytical/computational approach for controlling of

the noise generated by wake/blade-row interaction through the use of anti-sound actuators on

the blade surfaces. A representative two-dimensional section of a fan stage, composed of an

upstream fan rotor and a downstream fan exit guide vane (FEGV), is examined. An existing

model for the wakes generated by the rotor is analyzed to provide realistic magnitudes for the

vortical excitations imposed at the inlet to the FEGV. The acoustic response of the FEGV

is determined at multiples of the blade passing frequency (BPF) by using the linearized

unsteady flow analysis, LINFLO. Acoustic field contours are presented at each multiple of

BPF illustrating the generated acoustic response disturbances. Anti-sound is then provided

by placing oscillating control surfaces, whose lengths and locations are specified arbitrarily,

on the blades. An analysis is then conducted to determine the complex amplitudes required

for the control surface motions to best reduce the noise. It is demonstrated that if the number

of acoustic response modes to be controlled is equal to the number of available independent

control surfaces, complete noise cancellation can be achieved. A weighted least squares

minimization procedure for the control equations is given for cases in which the number of

acoustic modes exceeds the number of available control surfaces. The effectiveness of the

control is measured by the magnitude of a propagating acoustic response vector, which is

related to the circurnferentially averaged sound pressure level (SPL), and is minimized by a

standard least-squares minimization procedure.



1. Introduction

Aerodynamically-induced engine noise is becoming an increasingly important subject.

The noise produced by an engine arises from a variety of sources, but of particular concern

axe the discrete frequency tones generated through fan rotor/stator interaction. These tones

are quite annoying to a listener, and represent a significant environmental concern [1]. The

discrete tones appear in an engine noise spectrum as spikes at multiples of the blade passing

frequency (BPF), whose magnitudes are significantly higher than the background broadband

noise levels. It has been observed that noise reduction methods aimed at lowering broadband

noise can make the perceived noise problem worse, by further emphasizing the discrete

tones. Consequently, the turbomachinery designer is faced with the responsibility of reducing

discrete tone noise directly.

A major source of engine discrete tone noise is that generated within a fan stage by the

interaction of the wakes from the fan rotor with the blades of the fan exit guide vane (FEGV).

This interaction creates acoustic response waves, which under certain conditions propagate

unattenuated in amplitude as they move upstream and downstream from the FEGV. The

propagating acoustic response modes therefore provide targets for control analyses aimed at

reducing discrete tone noise.

In this report, we examine the noise generated by wake/blade-row interaction in a fan

stage, and investigate one possible strategy, namely the generation of anti-sound by the os-

cillations of blade surface actuators, for reducing this noise. Control is provided by adjusting

the amplitudes of the control surface, or piston, motions on the FEGV blades, to produce

acoustic response modes that are 180 degrees out of phase with the undesired response. The

superposition of the acoustic responses due to external excitations, i.e., those associated

with the rotor wakes, with those due to the control surface motions, results in a reduced net

acoustic response.

Active control of noise is an active area of research [2, 3, 4, 5, 6, 7], but applications to the

turbofan engine noise problem have only recently begun to appear [8, 9]. The experimental

studies in [8] and [9] suggest that the introduction of antisound as a means of active control

of turbomachinery noise may be a promising approach. The present report provides a com-

putational simulation of turbomachinery noise under realistic operating conditions, and its

subsequent control.

Section 2.1 of this report presents the analyses used to determine the vortical and entropic

excitations that represent the rotor wakes as seen by the stator. The linearized unsteady

analyis, LINFLO [10, 11], which is reviewed in Section 2.2, provides a means for determin-

ing the acoustic response of the FEGV to the vortical and entropic excitations. Since the

acoustic response of the FEGV is primarily attributable to vortical excitations, the entropic

excitations are not employed in the subsequent control analysis. Section 3 contains con-

trol algorithms developed to reduce the undesired acoustic responses. It is observed that if

the number of independent control surface actuators is equal to the number of propagating

acoustic response modes, then oscillation amplitudes of the actuators can be found that

result in a complete elimination of the noise. Analyses are also provided, based on weighted

least-squares minimization procedures, for reducing the noise as much as possible in the

more general case, where the number of propagating response modes exceeds the number of



control surfaces. Resultsof the active control analyses,both for complete cancellationand
least squaresminimization, areshownin Section4. Theseanalysesare intended to provide
a demonstration of the potential of active noise control through the useof blade surface
actuators, asa method for reducingdiscretetone turbomachinery noise.



2. Physical Problem

A two-dimensional representation of a typical fan stage is shown in Fig. 2.1. In each row,

upstream flow quantities are indicated by a subscript -e¢, while downstream quantites are

shown by a subscript +oo. The wheel velocity of the fan rotor cascade is Vw. Total (V) and

mean (V) velocity components are given in the figure with and without tildes, respectively.

Where confusion between reference frames might occur, primes axe used to denote quantities

associated with the fan rotor.

Axial and circumferential distances are represented via the Cartesian coordinate systems

(_', t/') and (_, r/) rigidly attached to the fan and FEGV rows, respectively. For the FEGV row,

the mean or steady-state positions of the blade chord lines coincide with the line segments

r/= _tanO +mG, O < _ < cosO, m = 0, 4-1, 4-2, ... , where rn is a blade number index,

O is the cascade stagger angle, and G is the gap vector which is directed along the g-axis

with magnitude equal to the blade spacing. Fan cascade quantities are defined analogously.

The velocity triangle relationships representing the transformation of velocities from

rotor-fixed to stator-fixed coordinates are examined in the general discussion of the wake

analysis below, which determines the vortical and entropic excitations resulting from the

fan wakes. Subsequently, the linearized unsteady flow analysis LINFLO is reviewed, which

shows how the vortical excitations are used in a numerical calculation of the resultant acous-

tic response of the FEGV.

2.1 Wake Excitation Model

The LINFLO analysis determines the acoustic response of a blade row to individual

Fourier modes of a vortical or entropic disturbance imposed at the inlet to the blade row. The

goal of the wake analysis, therefore, is to determine these Fourier modes through an analysis

of the fan wakes and a transformation from rotor-fixed to stator-fixed coordinates. The flow

within each wake is assumed to be parallel and aligned with the mean exit flow direction of

the rotor, and is characterized by a given velocity profile, centerline velocity defect V,_,/V',

and wake half-width _, which are defined below. The wakes have a circumferential period

equal to the rotor gap G'. In addition, it is assumed that across each wake, the static

pressure /5, and the total enthalpy /_. are constant. The assumption of constant static

pressure across the fan exit implies that the fan wakes will give rise to velocity disturbances

that are purely rotational or vortical in nature. Since the orthogonal components of the

velocity disturbances associated with vorticity are not independent, it is sufficient to find

the individual Fourier components of _, • eN, i.e., the component of the disturbance velocity

normal to the inlet flow direction of the FEGV, at each multiple of BPF. These quantities

will be found in terms of the wake shape parameters, the stator inlet flow properties, the

rotor wheel speed, and the gap to chord ratios for each row. Finally, the assumption of

constant total enthalpy provides a link between the disturbance velocity components arising

from the wakes, and the associated disturbance entropy components.

The velocity triangle for the region between the rotor and stator is shown in Fig. 2.1.
~1 I

Both the total velocity and the mean velocity from the rotor row, designated V+o o and V+oo
!

respectively, are seen to be oriented at the exit flow angle fl+_ of the rotor. The rotor moves
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Figure 2.1: Velocity triangles for fan rotor/fan exit guide vane configuration.

at a wheel speed of Vw in the positive r/' direction. By adding the wheel velocity vectorially

to the mean and total exit flow velocities of the rotor, the mean and total inlet flow velocities,

V_co and V_co, respectively, to the stator can be found. The difference between the mean

and total inlet velocities to the stator defines the perturbation velocity g', i.e.,

~1 I

g" = V+co - V+co. (2.1)

Consequently, the perturbation velocity can be found by an analysis of excitation row quan-
tities alone.

In keeping with the notation of Ref. [12], the symbols v + and u + will be used to represent

the components of _" in directions normal and tangential to the inlet mean flow velocity of

the stator (Fig. 2.2). From the figure, the component v + is found to be

v + = ";'- eN (V._co V._co)" " '= ' - sln(_+co n-co), (2.2)

where eN is a unit vector normal to the stator inlet flow direction.

In the rotor frame of reference, the wake velocity can be expressed as a Fourier series in

the circumferential direction, whose zeroth component can be identified as the mean velocity.

Consequently, v + can also be expressed as a Fourier series, whose individual components are
given by

oo

+ exp(inxnrl') (2.3),,+(¢)= ,,.
n co



V

Vw

Figure 2.2: Magnification of the circled region from the velocity triangle.

= 2r/G' is the circumferential wavenumber of the vortical excitation, G' is the gapwhere x,

to chord ratio for the rotor, and

+ 1 [_' f+a'
v,, = -_ sn_., v " eNexp(--inxnrl') dq" (2.4)

where 17_ is a reference location in the rotor frame.
Note that the rotor-fixed and stator-fixed coordinates are related by x' = x-Vwt, where

x' = (_', r/') is a position vector in the moving frame attached to the rotor, and x = (_, r/)

is a position vector in the stationary reference frame. Therefore, the v + components defined

by Eq.(2.3) in the rotor frame can be expressed as

OO

v + = y]_ v n+exp(inxnrl)exp(-inxnVwt ) (2.5)
n

in the stator frame, which demonstrates that while the disturbance velocity is steady in

the rotating frame, it provides a set of unsteady disturbances in the stationary frame with

frequencies w, = -nx,Vw. The interblade phase angles a, of these disturbances are found

from the circumferential wavenumber and the gap to chord ratio of the stator row, i.e.,

O"n _- n/_r/G.

Wake parameters

To evaluate the v + components, it is thus necessary to have an expression for the rotor

" ' This velocity will be evaluated by using the semi-empirical rotor wakeexit velocity, V+o _.



model of Majjigi and Gliebe [13], which definesthe wake velocity at streamwiselocations

downstream of the rotor in terms of a shape function, a centerline velocity defect, and a

wake half-width. The behavior of these quantities will be described below, as will their

implementation into the analysis for the calculation of the vortical and entropic excitations
to the FEGV.

The rotor wakes are assumed to be aligned with the exit flow direction of the rotor,

and to be identical from blade to blade. In terms of a Cartesian coordinate system (T', N')

tangential and normal to the rotor exit flow angle, with origin at the rotor blade trailing

edge, the velocity in a reference wake can be expressed as

V'(T',N')eT, = V'_(T') (1
v-o] (2.6)

v-- v: ] er,,

where V'(T') is the velocity at the edge of a wake, Vda(N' ) is the wake deficit, defined as

the difference between the edge velocity and the velocity in the wake, at each N', Vdan is the

minimum streamwise velocity across the wake, and eT, is a unit vector tangential to the rotor

exit flow direction. The quantity Vdet/V" _ = f(N') is a shape function that is dependent only

on the normal coordinate, N'. The wakes are assumed here to be symmetric, so the minimum

velocity occurs at the wake centerline and the quantity V_/V_ will be hereafter referred

to as the centerline velocity defect. Two different shape functions are usually considered,

a hyperbolic secant function or a Gaussian function. A given wake velocity distribution is

made unique by specifying the shape function, the centerline velocity defect, and the wake

half-width, which is defined as the distance between the points where the wake deficit is half

its maximum value. The shape functions are therefore given by

(2.7)

for the hyperbolic secant profile, or

(2.8)

for the Gaussian profile. The hyperbolic secant profile is used in the results presented below.

The centerline defect V_n/V" and the half-width b are given by the empirically determined

functions [13]

and

V_,i, . Cff4 (0.3675 T' + 1.95 (2.9)

b = 0"2375cffS T' + 0.034125
, (2.10)

0.357Cff s T' + 1.0

where CD is the section drag coefficient. In these equations, the streamwise distance T _

and the wake half-width b have been nondimensionalized by the rotor chord. A typical

wake velocity profile, based on the hyperbolic secant shape function, is shown in Fig. 2.3.

Fig. 2.4 shows the variation of the centerline velocity defect and the half-width with increasing

streamwise distance from the fan rotor under consideration. Note that the decay of the
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Figure 2.3: Typical wake profile V'(N) = V"- V_ef(N'), where V" is the edge velocity, 6 is the

wake half-width, and V_ef(N') is the velocity deficit at each N'.

centerline velocity defect occurs primarily in the near wake.

After determining the velocity distribution across the wake, the Fourier decomposition

in Eq. (2.4) must be performed on the component of this velocity normal to the inlet flow

direction for the stator, at an appropriate axial _' location downstream of the rotor. The

results of the Fourier decomposition then yield the v+ values in Eq. (2.3). Note that care

must be taken to ensure that all velocities are nondimensionalized with respect to the mean

inlet flow velocity to the stator. In terms of a given centerline velocity defect, the rotor wake

edge velocity can be shown to be

V" = V_ , (2.11)

1 V_a_ [,7',.,+a' f ( rf )drf
1 G' Ve t d_',,,

where the mean exit flow velocity of the rotor can be expressed in terms of the stator row

inlet flow angle and the wheel speed by

V_.oo = _/1 + V_v - 2Vwsinfkoo. (2.12)

Values for the v+'s have been determined at several axial stations within the region

between the fan rotor and FEGV. The wake profiles were determined by evaluating the

8
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Figure 2.4: Variation in centerline velocity defect, V_n/V _, and wake half-width, _, with stream-

wise distance along a blade wake for a representative fan rotor.

parameters _ and V_anlV' _ at each axial station through the empirical relations in Eqs. (2.9)

and (2.10), after a transformation from (_',r/') to (T',N') coordinates. Typical results for

the variation in the magnitudes Iv+l, n = 1,2,...,6, of the complex amplitudes v + with

increasing axial distance are shown in Fig. 2.5. Note that there is an initial decay in the

magnitude of each component followed by a much more gradual decrease with axial distance.

Also, the decay is more pronounced for the higher order components.

The inviscid analysis of the FEGV imposes the vortical exitations at the inlet of the

FEGV row. Since vortical and entropic disturbances are convected through the response

row, their magnitudes are unaltered. Figure 2.5 demonstrates that if the axial spacing

9
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Figure 2.5: Variation of the magnitudes of the complex Fourier components Iv l with axial

distance downstream of the trailing edge of the fan rotor.

between the blade rows is sufficiently large, the magnitudes of the Fourier components will

not vary substantially. It is necessary, however, to choose an axial location at which the

v + components will be evaluated. Common practice suggests that the leading edge of the

response blades is a reasonable choice, and will be adopted herein.

Entropic disturbances

It has been assumed that the fluid pressure and total enthalpy are constant across each

wake. These restrictions can be used to relate the entropic disturbances associated with the

wakes to the velocity disturbances associated with the wake vorticity. The total enthalpy

downstream of the fan rotor is given by

/._, -, 1_, 1_/, V+oo,• = -1) P_oo/P+oo -_ +ooV+oo 7(7 + •T.+_=H+_+_ +oo -, -1", _ ", (2.13)

I 19'
T,+cx_ -- T,+oo, *+cowhere H+oo is the static enthalpy. After linearizing this relation, setting/1' - H' "

I t -- 1 ~l l ~I -I

P_-¢o, and introducing the thermodynamic relation s+= = 7 P+,,dP_-=, -P+oo/P+oo, we find
that

" = 1"-' V' -, , _ , -, , 2s+¢o -7-'(3'- )P+_ +_.v+_/P+_ --(3'- 1)V+co'v+_/(A+_) (2.14)

where A 2 = 7P/P is the speed of sound propagation in the mean flow. From Fig. 2.1, it can
' -' ' " Therefore,be seen that V+oo "v+oo = V_.oov+oo. In addition, 's+oo s-oo and '--" _)+oo = V-oo.

10



the disturbance entropy that acts as the excitation at the inlet of the FEGV is given by

___ =(1-7)M+oo___/A'+_ (2.15)

where _-oo is the complex amplitude of the velocity disturbance associated with the vortical

excitation. The relative exit Mach number from the rotor can be related to the inlet Mach

number of the stator through the relation M_._ = V_._oM_o_, since the nondimensional

inlet mean velocity to the stator has magnitude one. The complex amplitude of the nth

component of the disturbance entropy is given by

s-_,,, = (1-7)M_.ooM-_v-_,,, (2.16)

where the Mach numbers M_.oo and M_¢¢ are based on the relative flow speeds, V¢¢,, and

V__, respectively.

In summary, the wake flows are assumed to be parallel, aligned along the rotor exit flow

angle, with constant total enthalpy and constant static pressure. At an axial location corre-

sponding to the leading edge of the stator row, the wake velocity distribution is calculated

using a shape function (cf. Eq. (2.7) or (2.8)), a centerline velocity defect at that location,

which is found from Eq. (2.9), and a wake half-width at that location, which is evaluated

from Eq. (2.10). By performing a Fourier decomposition on the component of the wake

velocity normal to the inlet flow direction of the stator, v + values are found via Eq. (2.4).

The magnitudes of entropic excitations corresponding to the v + values can then be deter-

mined as well. The inlet vortical and entropic disturbances to the FEGV are characterized

by interblade phase angles an = na = n_G, and frequencies wn = nw = -nt%Vw, and are

imposed at the inlet of the stator row, where an inviscid analysis numerically determines the

resulting acoustic response.

2.2 Unsteady Flow through the Stator Blade Row

This section summarizes the method for calculating the unsteady pressure response of

the FEGV to the imposed vortical and entropic excitations found from the wake analysis.

The response is calculated using the LINFLO analysis [10, 11]. The entire analysis in this

section will be performed in the stator frame of reference.

The flow through the FEGV is considered to be a time-dependent, adiabatic, attached

subsonic flow, with negligible body forces, of an inviscid non-heat-conducting, perfect gas.

It is assumed that in the absence of unsteady excitation the mean flow is uniform at the inlet

to the FEGV. The unsteady fluctuations in the flow arise from the entropic or vortical exci-

tations at inlet, as well as the motions of control surfaces on the blades. All the excitations

are assumed to be of small amplitude, periodic in time, and periodic in the r/-direction.

Control surface motions will be modeled as prescribed blade motions of the form

77.B(x+ raG, t) = Re{rs(x)exp[i(wt +ma)]} x • B. (2.17)

that are restricted to portions of the blade surfaces. Here 7_B measures the displacement

of a point on a blade surface relative to its mean or steady-state position, x is a position

vector, t is time, rB is a complex displacement-amplitude vector, Re{ } denotes the real part

11



of { } and B denotes the reference (rn = 0) blade surface. The incident disturbances are

prescribed as functions of x and t which satisfy the field equations that govern the unsteady

flow. Thus, small-amplitude entropic and vortical fluctuations relative to a uniform stream

must be of the form

__oo(x,t)=Re{s-ooexp[i(tc-oo'x+wt)]}.-. , _<__ , (2.1s)

and

__o_(x,t) = Re{___exp[i(t¢_o_ .x +wt)]}... , < (2.19)

Here s__ and (:__ are the (prescribed) complex amplitudes of the entropic and vortical

fluctuations, _(x, t) and _(x, t), respectively, far upstream (_ < __)of the FEGV.

The fluid motion is governed by a coupled set of nonlinear differential equations (i.e.,

the Euler equations) in continuous regions of the flow, a flow tangency condition at blade

surfaces, and jump conditions at vortex-sheet unsteady wakes. In addition, information on

the uniform flow conditions at inlet and exit and the entropic and vortical fluctuations at

inlet must be specified. Since the unsteady excitations are assumed to be of small-amplitude,

the time-dependent flow can be regarded as a small perturbation about an underlying mean

or steady flow. This linearization can be performed by substituting relations analogous to

that for the time-dependent fluid velocity, i.e.,

V(x,t) = V(x) + _(x, t)+ ..., (2.20)

where V(x) is the local mean velocity, and 9(x, t) is the first-order (in e) unsteady velocity

into the full, time-dependent governing equations and collecting terms of like power in

and neglecting terms of O(e 2) or higher. The first-order unsteady fluctuations that arise

from the various independent modes of excitation are not coupled and hence, can be deter-

mined separately. Indeed, it is sufficient to determine unsteady flow solutions for each single

harmonic (in t and 7/) component of a given disturbance. Solutions for arbitrary distur-

bances and arbitrary combinations of various disturbances can then be obtained by Fourier

superposition.

The first-order or linearized unsteady flow properties caused by a periodic unsteady exci-

tation at temporal frequency w will be harmonic in time, e.g., 9(x,t) = Re{v(x)exp(iwt)}.

In addition, the steady and, for an excitation at circumferential wave number x n = aG -1,

the first-order unsteady properties will satisfy the blade-to-blade periodicity conditions, e.g.,

V(x + raG) = V(x) and v(x + rnG) = v(x) exp(irnvr), respectively. Thus, solutions to time-

independent nonlinear steady and linearized unsteady flow problems are required only over

a single extended blade-passage region of the cascade. In addition, since analytic far-field

solutions can be determined [14], the numerical solution domain can be restricted further to

a single extended blade-passage region of finite extent in the axial-flow direction.

The Steady Background Flow

As a consequence of the assumption of uniform mean flow at inlet, the steady background

flow will be isentropic and irrotational. Thus, V = V_,

W. (_WO)=0 (2.21)

12



and the fluid properties are related by

(M_ooA)2 = # .y-1 = (TM2oop)(.y-O/.y = 1 O'- 1M2oo[(V¢) 2 _ 1]
2

(2.22)

where _, M, A,/_ and P are the steady velocity potential, Mach number, speed of sound

propagation, density and pressure, respectively, and 7 is the specific heat ratio of the fluid.

Numerical procedures for determining two-dimensional steady potential flows through cas-

cades have been developed extensively, e.g., see [15] and [16], particularly for flows with

subsonic relative inlet and exit Mach numbers (i.e., Ma:oo < 1). The usual practice in such

calculations is to solve the mass conservation equation (2.21), subject to a prescribed (i.e.,

V-oo and fl-oo) uniform inflow, flow tangency at blade surfaces, and a Kutta condition at

blade trailing edges.

The Linearized Unsteady Flow

The system of field equations that govern the linearized unsteady perturbation of a

potential mean flow can be cast in a very convenient form by introducing the velocity de-

composition [17, 18]

v = v, + We = vR + We. + V_b, (2.23)

where the rotational velocity, vR, is taken to be divergence-free far upstream of the blade row,

¢. is a convected or pressure-less potential (i.e., De.lOt = 0) which satisfies the condition

Yr. • n = -vR • n at blade and wake mean positions, and the unsteady pressure depends

only upon the potential, ¢, through the relation p = -_D¢/Dt, where D/Dt = iw + V'_. V

is a convective derivative based on the mean-flow velocity.

The system of field equations that governs the linearized unsteady flow variables, s, vR

and ¢ is determined by substituting the velocity decomposition (2.23) into the linearized

Euler equations. If the underlying mean flow is isentropic and irrotational, the unsteady

equations reduce to
/_S

-o (2.24)
Dt

m(D sV¢/2) + [(vR sV¢/2) V]V¢ 0 (2.25)ot,V - _ . =
and

b ,_2/)¢, _iV
_--_(.,i _-_-) - _ • (_V¢) = _-'V. (/_v.) (2.26)

These equations are coupled only sequentially; hence, they can be solved in consecutively to

determine the complex amplitudes of the entropy (s), rotational velocity (vR) and velocity

potential (¢), respectively.

Closed form solutions [17, 19] can be determined for the entropy and rotational velocity

fluctuations in terms of the known conditions at inlet, i.e.,

s(x) = s-oo exp(it¢_oo. X), (2.27)

and

vn(x) = [V(X..A-oo) + s_ooV¢/2]exp(io¢_oo. X), (2.28)

13



where X = AeT -4- _I/eN, A and qs are the drift and stream functions, respectively, of the

steady background flow, and ,4__¢¢ = vR,-oo - s__V__/2 [19]. Since _-oo = it¢_¢¢ × vR,-oo

and the rotational velocity is divergence-free far upstream of the blade row, the vectors I¢__

and vR,-¢¢ are orthogonal and vp___¢ = i(t¢__ x ___)/It¢_¢¢12.

A convected potential of the form [18, 19]

¢, = [-iw-',A.-oo" V-oo + F(_)] exp(it¢_oo. X), (2.29)

where

×F(_)
2_r(1 - iaow) sin G cos ___ j '

(2.30)

will ensure that v.. n = (vR + We.)- n = 0 at the mean blade and wake surfaces, and hence,

that re. n is finite at such surfaces. Thus, the unsteady flow variables s, vR and ¢. can be

evaluated in terms of the drift and stream functions of the steady background flow.

The unsteady velocity potential, ¢, is governed by the second-order partial differential

equation, along with conditions at the blade and wake surfaces and at the inlet and exit

boundaries. This function can be found numerically as a solution of the field equation (2.26)

subject to the appropriate surface and far-field conditions. The flow tangency condition

V¢-n = [iwr + (VO. v)(r. V)r- (r. V)VO]-n (2.31)

applies at the mean blade surfaces (Bin), and the linearized unsteady pressure and normal

velocity component are continuous across blade wakes (Win), i.e.,

Ib¢/Dtl = 0 and [V¢l'n = 0. (2.32)

The velocity potential fluctuations in the far upstream and far downstream regions de-

pend upon the prescribed excitation as well as on the acoustic and vortical response of the

cascade. Analytic solutions for ¢ can be determined [14], which satisfy the requirements that

acoustic response disturbances either attenuate with increasing axial distance from the blade

row or propagate carrying energy away from or parallel to the blade row and that vorticity

must be convected downstream. These solutions can be matched to a near-field numerical

solution and thereby serve to complete the boundary-value problem for the unsteady poten-

tial. The vortical excitations determined by the wake analysis can thus be imposed at the

inlet of a single extended blade passage of the FEGV, and the resultant acoustic response

can be calculated. The amplitudes of the propagating acoustic response modes are then the

targets of the active noise control analysis, which is presented in the next section.
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3. Control Surface Analysis

The analyses in the previous two sections described how vortical and entropic excitations,

that represent the effects of the rotor wakes on the stator row, are determined and how those

excitations are used in the LINFLO analysis to determine the subsequent acoustic response

of the stator row. The propagating far-field acoustic response waves thus found make up

the discrete tone noise at multiples of the blade passing frequency, and are the targets of

the control analysis given in this section. Note that for the purposes of the control analysis,

all of the acoustic response waves are considered to be independent modes. The means, for

instance, that the upstream and downstream moving acoustic response waves at 2 BPF are

considered different, even though they both have the same frequency and interblade phase

angle.

3.1 Anti-sound Generator Implementation

Wake/blade-row interaction noise can be reduced by using discrete blade surface actuators

to generate sound out of phase with the undesired acoustic responses. These actuators, or

pistons, have been implemented into the LINFLO analysis as oscillating control surfaces

on the suction and pressure surfaces of each blade. A general blade motion is represented

by Eq. (2.17). Control surfaces, that oscillate with a prescribed translational displacement

normal to the mean blade surface with a given frequency and interblade phase angle, are

defined over restricted portions of the blade surfaces. For a set of K control surfaces or

pistons, the complex amplitude of the displacement at the reference (m = 0) blade is given
by

K

rs(x) = Y_ rk [U(x - xk,h)- U(x- xk,t,)] (3.1)
k=l

where the index k ranges over the K pistons, rk = rkeN is the displacement of the kth piston

with complex amplitude rk, eN is a unit vector normal to the blade surface, U is the unit

step function, and xk,le and xk,te are the locations of the leading and trailing edges of the

kth piston. Individual pistons are specified by choosing midpoint locations and lengths as a

fraction of chord. The control analysis then calculates chordwise positions of the leading and

trailing edges of the piston, and requires the surface segment within this range to perform a

translational oscillation at the specified frequency with the specified complex amplitude.

The analysis presented below shows how to determine the complex amplitudes rk, k =

1,..., K of the pistons in order to best minimize the noise level, given the piston lengths and

locations. The analysis assumes that there are K actuators on each blade, whose motions

at each chordwise position are related to their counterparts on the reference blade through

the interblade phase angle. An assessment of the effect of varying piston positions is given
in the Results section.

3.2 Control Algorithm

The unsteady aerodynamic equations governing small unsteady perturbations of a uni-

form mean flow can be solved to yield the wavenumbers and attenuation constants for all
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acoustic response disturbances [14]. The form of the acoustic response, i.e., the wavenumbers,

attenuation constants, and propagation directions of each response wave, is independent of

the means of excitation. The linearity of the unsteady equations for small amplitude excita-

tions implies that superposition is valid, so if both an external excitation and a set of control

surface oscillations act simultaneously, the net complex amplitudes of the acoustic response

waves will be equal to the sum of the responses to the individual excitations. Thus, the

control excitations can in principle be "tuned" so that their corresponding acoustic response

waves are of equal amplitude but 180 degrees out of phase with the undesired responses

produced by vortical and entropic excitations. Such surface motions then act as sources of

anti-sound which cancel the undesired noise.

Assume that there are N acoustic response modes and K independent control surfaces.

The total acoustic response due to both a specified excitation and a set of control surface

motions will contain contributions attributable to each. The complex amplitudes of the net

propagating acoustic response modes can therefore be expressed as a vector PR such that

PR = PR,exc + PR,ctri = PR,exc + Ar. (3.2)

The N x K matrix A contains as its elements the complex amplitudes of each propagating

acoustic response wave resulting from a unit amplitude oscillation of each control surface, and

the vector r contains the complex amplitudes rk of the control surface motions. If K = N,

the matrix A in this equation is square and invertible. Consequently, a set of control surface

amplitudes given by
rexact = --A-lpR,exc (3.3)

will yield pn = 0. In this case, the net amplitude of each propagating acoustic response

wave will be zero.

If, however, K < N, then the length of the total response vector []Pn]l = (pn. pn)_/2

provides a natural measure of the net sound. In this expression, the superscript H denotes

the Hermetian, or conjugate transpose, of the total response vector. In order to minimize

Ilpnl] in a least-squares sense, it can be shown [20] that it is necessary to chose the vector

Pn,ctrl = Ar to be perpendicular to pn, i.e.,

PR,ct,lH. PR = (Ar)n(Ar + PR,exc) = 0 . (3.4)

Expanding the Hermetian product allows this equation to be written as

rn(AnAr + AHpR,exc) = 0 (3.5)

whose nontrivial solution is given by

risq = -(AHA) -1AnpR,_¢ • (3.6)

This set of control surface motions will minimize the length of the acoustic response vector,

IIPRII.
The least squares minimization treats each element of the propagating response vector

as equally important. It may be true in certain situations that the reduction of some modes

is more important than others. Consequently, a weighting matrix W can be introduced into

Eq. (3.2), i.e.,

WpR = WpR,_ + WAr. (3.7)
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The matrix W is chosento be square,diagonal,and composedof real elements. The values
specifiedon the diagonal represent the relative importance assigned to the individual modes.

The least-squares solution of this equation minimizes the length of a weighted net propagating

response vector, IlWpRIh and is given by

rwlsq ---- -- (AHWTWA)- 1A HWTWpR,exe. (3.8)

Note that if the matrix A is invertible, then Eq. (3.8) reduces to the solution given in

Eq. (3.3), and that the least squares solution given in Eq. (3.6) represents the case where

the weighting matrix is chosen to be the identity matrix. Note also that this procedure

minimizes the length of the weighted net propagating response vector, I lWpRII, which could

result in a larger value for IIPRI[ itself than in the cases without control applied.

The conclusion, therefore, is that if there are more propagating acoustic response modes

than available independent control surfaces, a natural measure of the net sound produced

is provided by a scaled length of the total acoustic response vector. The scaling is provided

through the use of a specified weighting matrix W. The length of the scaled acoustic response

vector is minimized by performing a least squares minimization procedure, whose result is

given by Eq. (3.8), or by Eq. (3.6) if no weighting is performed.

3.3 Circumferentially Averaged Sound Pressure Level

The length of the total acoustic response vector [[Pnl[ is directly related to the circum-

ferentially averaged sound pressure level SPL. The sound pressure level, SPL, is defined to
be

SPL = 20 logxo P---_, (3.9)
Pret

where Pn,_ is the root mean square value of the unsteady pressure and P_t is a reference

pressure, whose dimensional value is generally taken to be 2 x 10 -s Pascals for airborne
sound.

The mean-square pressure, </_2 >__ p_, for a pressure disturbance at frequency w is
defined to be

1

--]o_"_ 2 d(wt) (3.10)

The acoustic response at a single frequency is composed of a series of individual modes with

different wavenumbers, i.e.,

= Re{pexp(iw¢)} = Re n_____Pn exp(iw¢) (3.11)

where the complex amplitude of the nth mode, p,_, can be expressed as

pn = a_ exp[_ + i(k_,_ + k,,_)] (3.19.)

where an, _n, k_,n, and k,,,_ are the complex amplitude, attenuation constant, axial wavenum-

ber, and circumferential wavenumber of the nth mode, respectively. Substituting Eq. (3.11)

into Eq. (3.10) and performing the averaging results in

1 +_ 1 +_

</_ >= _ _ (P,nP: +PnPm) = _ _ Re{p,p_n} (3.13)
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where the superscript * denotes the complex conjugate. The terms in Eq. (3.13) depend

upon circumferential position, by Eq. (3.12). Therefore, taking the square root of < 152 >

and substituting the result into Eq. (3.9) will result in a sound pressure level that is also

dependent upon circumferential position. This dependence can be eliminated by averaging

< /52 > around the circumference, i.e., integrating from r/ = 0 to q = NBG, where NB is

the number of blades in the stator row, dividing by the circumference, and substituting the

resulting expression into Eq. (3.9). This result is defined to be the circumferentially averaged

sound pressure level, SPL, which is given by

,sPLi01ogl0(   p.p )20,ogi0p ,(3.14)

where the overbar indicates circumferential averaging.

As above, consider the case where there are N propagating acoustic response modes. If

the complex amplitudes of the propagating response modes are placed in a vector Pn, then

the argument to the logarithm in Eq. (3.14) is related to the magnitude of this vector via

1 . 1 H 1 [2.Z  pR, pR,.= =  IIpRI
N prop

(3.15)

The logarithm is a monotonically increasing function, so the minimum of its argument cor-

responds to the minimum of SPL. Consequently, since the least squares solution for the

control surface motions given in Eq. (3.6) minimizes IIPRII, it also minimizes SPL.

In summary, given N propagating acoustic response modes and K independent control

surfaces, then if K = N the oscillation amplitudes of the pistons can be determined using

Eq. (3.3) to give complete cancellation of the noise. If K < N, then the magnitude of the

net propagating acoustic response vector provides a convenient measure of the net sound,

and can be minimized by using the least squares minimization procedure given in Eq. (3.6)

or the weighted least squares minimization procedure given in Eq. (3.8). The least squares

minimization procedure also minimizes the circumferentially averaged sound pressure level,

SPL.
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4. Results

The following results are based on an analysis of a representative fan stage composed of an

upstream fan rotor and a downstream fan exit guide vane. The FEGV blades are constructed

by superimposing the thickness distribution of a NACA 0008 airfoil on a circular arc camber

line. The latter has a height at blade midchord of 0.08. The FEGV cascade has a gap to

chord ratio G of 0.836, and a stagger angle O of 10 deg. The inlet and exit relative freestream

Mach numbers are M-oo = 0.55 and M+o_ = 0.45, respectively, and the inlet and exit flow

angles are fl-o_ = 30 deg and fl+_ = -2.39 deg respectively. The rotor blade passing

frequency (BPF) as seen from the stator is w = 4.106, and the interblade phase angle at

BPF is a = -2.513.

The chord length of the fan blades is approximately 2.3 times the chord of the FEGV

blades. The gap to chord ratio G' of the fan cascade is 2.09. The wheel speed at the radial

location chosen for the 2D cascade section is 1.366, nondimensionalized with respect to the

inlet flow velocity of the response row. This set of parameters results in an exit flow angle

for the rotor row of _o_ = -45 deg.

4.1 Generation

The wake model given in Section 2.1 was used to compute the velocity distribution down-

stream of the rotor. A Fourier decomposition of this velocity field was then performed to

determine the Fourier components of the unsteady excitation at the FEGV inlet. The mag-

nitudes of the v + components were evaluated at the leading edges of the stator blades. This
+location is two (rotor) blade chords downstream of the fan. Table 4.1 shows the chosen v n

values, along with the frequencies and interblade phase angles for the first three harmonics of

the blade passing frequency. The analysis in Section 2.1 showed how the vortical disturbance

amplitudes could be used to determine the amplitude of entropic disturbances as well, but

the entropic disturbances at these amplitudes do not produce significant acoustic responses

and are therefore not shown.

An analysis of the equations governing the unsteady flow in the far-field of the stator

reveals that at BPF, the acoustic response is "cut-off," i.e., all of the acoustic waves present

in the flow are of the decaying type. At 2 BPF, there are two propagating response waves,

n

Vortical Excitation Data

O"n t.d n /_n+

-2.513 4.106

-5.026 8.212

-7.539 12.318

(.14807 x 10-1,0.)

(.82745 x 10 -2 ,0.)

(.41493 x 10 -2 ,0.)

Table 4.1: Interblade phase angles, frequencies, and complex amplitudes for the first three

harmonics of the vortical excitation calculated from the wake model.
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Figure 4.1: Vortical excitation and acoustic response fields. (a) vortical field at BPF; acoustic

fields at (b) BPF, (c) 2 BPF, and (d) 3 BPF.

one in the upstream flow field and one in the downstream field, and at 3 BPF, there are four

propagating response waves, with two in each flow field.

Figure 4.1 shows contours of the real part of the unsteady vorticity field at BPF, and

contours of the real part of the unsteady pressure at BPF, twice BPF, and three times

BPF. The vortical fields at twice and three times BPF are similar to that at BPF, with

slightly different shapes to the contours. These contour plots are the results of a numerical

solution of the equations governing the steady and the first-order unsteady flows. In each

case, vortical excitations have been imposed at the inlet to the cascade. The vorticity in

Fig. 4.1a is convected through the blade row by the steady background flow. For the acoustic
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response fields, the contour ranges were chosen to emphasize the propagating acoustic modes.

Note that in the BPF acoustic contour plot shown in Fig. 4.1b, all the response modes are

decaying, so the magnitude of the unsteady pressure drops quickly with increasing distance

from the blade row.

The pressure contours for the 2 BPF case in Fig. 4.1c show a single propagating wave

upstream of the cascade and a single propagating wave downstream of the cascade. If all

propagation angles are measured counterclockwise from the positive _ axis. The upstream

acoustic wave is propagating at an angle of -170.8 deg and has a wavelength of 0.676 blade

chords, while the downstream acoustic wave is propagating at an angle of-27.8 deg and has a

wavelength of 1.98 blade chords. The complex amplitude of the upstream propagating wave

is pR,-o_ = (-0.1309 × 10 -2, 0.4937 × 10-a), and the complex amplitude of the downstream

propagating wave is pR,+oo = (0.1970 × 10 -2, -0.2540 × 10-3).

The 3 BPF acoustic field shows two propagating waves in each flow field. The upstream

waves are propagating at angles of 172.8 deg and -156.5 deg, and have wavelengths of 0.52

and 0.42 blade chords, respectively. The downstream waves are propagating at angles of

18.7 deg and -79.0 deg, and have wavelengths of 1.33 and 1.03 blade chords. The complex

amplitudes of these propagating waves are

PR,-_,I

PR,-_,2

PR,+oo,1

pR,+eo,2 =

(0.2065 × 10 -3,

(-0.5222 x 10 -3,

(0.1135 x 10 -3,

(0.8927 × 10 -3,

0.4054 × 10 -a)

-0.3309 × 10 -3)

0.2421 x 10 -3)

0.2673 × 10 .3 )

(4.1)

A linear superposition of two acoustic waves of equal magnitude and different propagation

directions results in a series of ellipses on a contour plot of the unsteady pressure. The

magnitudes of the upstream propagating waves at 3 BPF are relatively close to each other

(a factor of approximately 1.36), and the angle between them is approximately 30 degrees.

The acoustic field in Fig. 4.1d reflects this by showing somewhat elongated ellipses upstream

of the cascade. The downstream flow field is dominated by the n = 2 mode, which is much

larger in magnitude (by a factor of about 3.5) than the downstream n = 1 mode, and the

contour plot shows this as well.

4.2 Control

Complete Cancellation

The control procedures described in Section 3 have been implemented for the represen-

tative fan stage. The acoustic responses at 2 BPF and 3 BPF contain propagating acoustic

response waves with the complex amplitudes given above. To demonstrate the possibility

of complete cancellation of the propagating acoustic modes, at each multiple of BPF the

number of control surfaces was chosen to be equal to the known number of propagating

acoustic response modes. For this demonstration, the lengths of all of the control surfaces

was chosen to be 0.1 chord. The locations of the control surfaces were specified arbitrarily,

and as long as non-0verlapping control surfaces were selected, the resulting control matrix

A in Eq. (3.3) could be inverted. The elements of A were determined by specifying a unit
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Figure 4.2: Acoustic fields showing complete cancellation of propagating modes at (a) 2 BPF

and (b)3 BPF.

amplitude displacement for each control surface as an excitation for the LINFLO analysis,

and calculating the resulting complex amplitudes of each of the propagating response modes.

Since two propagating acoustic response modes exist at 2 BPF, two control surfaces

(on each blade) were selected. One piston was placed on the suction surface centered at

0.2 chord; the other, on the pressure surface at 0.8 chord. The solution of Eq. (3.3) for

the 2 BPF excitation gave the complex amplitudes of the control surface motions as rl =

(0.2542 x 10 -3, -0.4153 × 10 -3) and r2 = (-0.1224 × 10-2,0.1080 x 10-2).
Four control surfaces were used for the 3 BPF case, two of which were placed on each

surface of the blade. The control surfaces on the suction surface were centered at 0.2 and 0.7

chord; those on the pressure surface, at 0.3 and 0.8 chord. The solution to Eq. (3.3) for the

responses in the propagating modes to the vortical excitation and to unit amplitude piston

oscillations yields
rl = (0.4286 × 10-4, 0.9962 x 10-4)

r2 = (0.9207 x I0-s, 0.1902 x 10-3)

r3 = (0.2665 x i0-3, 0.6581 x 10-4)

r4 = (-0.4100x 10-4, 0.1854 x lO-3)

(4.2)

for the complex amplitudes of the control surface motions. The magnitudes of the acoustic

response modes when both the vortical excitation and the control surface motions were

present were all on the order of 10 -z. Contour plots of the acoustic fields with the control

motions applied along with the vortical excitation are shown in Fig. 4.2. The response within

the cascade in these figures is dramatically larger than that without the control motions,

but the far field acoustic response has been virtually eliminated. No other structural or

aerodynamic effects that may arise due to the piston motions have been evaluated. Should

difficulties arise, however, the control analysis can be performed with the pistons at alternate

locations. The effect of piston location on the control effectiveness is examined below.
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Effect of Piston Location

Since there are a finite number of grid nodes on the surfaces of the blades, the calculated

leading and trailing edges of the piston did not fall directly upon grid points. The length

of the piston as seen by the numerical analysis, therefore, was not exactly equivalent to the

length specified, and a small change in the location of the midpoint of the piston for a given

length yielded differing numbers of included gridpoints. This is an inevitable consequence

of the non-uniform distribution of mesh points along the blade surface. The numerical

length of the piston thus seen by the numerical code appeared to increase and decrease

as it was moved along the blade, even though the specified length was not intended to

change. The numerical representation of the piston thus implies that its specified length

and location are not completely independent. This complicates parametric studies of the

effects of changing lengths or locations of the control surfaces. Also to be noted is that the

surface boundary condition contained in Eq. (2.31) contains the gradient of the displacement.

The pistons have finite length, so their designated motions take the form of square pulses

of translational oscillations of a given complex amplitude. The numerical implementation,

however, performs a second-order central difference of the displacement on an irregular mesh,

which has the effect of rounding the corners of the specified displacement. Neither of these

effects, i.e., the weak coupling of piston length and location by the surface grid nodes, and

the finite difference smoothing of the specified displacements, dramatically affect the control

analysis. Rather, these factors are endemic to the numerical formulation, and make the

results somewhat dependent on the density of the grid points on the surfaces of the blades.

Each of the cases presented here was run on a global mesh containing 155 streamwise points

and 40 circumferential points, which distributed 65 points on each of the suction and pressure

surfaces of the blades. The number of surface grid points contained within the 0.1 length

pistons ranged from four to seven, depending on location.

To ascertain the effect of varying the control surface locations, a series of 50 tests was run

at 3 BPF. In each case, a piston of length 0.1 was placed at varying locations on either the

suction or pressure surface of each FEGV blade, and oscillated at unit amplitude. Twenty-

five top and twenty-five bottom surface locations were examined. The magnitude of the

acoustic response of each propagating mode is shown as a function of the piston location in

Fig. 4.3. Fig. 4.3a contains information from moving the piston along the suction surface,

while Fig. 4.3b contains information from moving the piston along the pressure surface.

There are four propagating modes at this frequency and interblade phase angle, so four lines

appear on each figure.

An examination of Fig. 4.3 suggests several conclusions. First, it appears that there

are no obviously preferred locations for the pistons. Each mode has a completely different

reaction to variations in piston location, and while the curves do show maxima, the maximum

response value of each curve occurs at a different piston location. Second, the figure shows a

certain jaggedness in some of the response magnitude curves. This effect is due to the weak

coupling between length and location described above. Third, since each propagating mode

has a unique dependence upon piston location, any conclusions made on piston location

would be case dependent. While a complex optimization could in principle be performed

to find a set of piston locations that would minimize the necessary control amplitudes, it is

unlikely that the resulting set of locations could be generalized to arbitrary cases. Finally,
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Figure 4.3: Effect of piston placement on mode magnitudes. (a) Suction surface piston, (b)

Pressure surface piston. In each case, the solid line is for mode 1 upstream, the short dashes are

for mode 2 upstream, the mixed long and short dashes is for mode 1 downstream, and the long

dashes are for mode 2 downstream.

the acoustic response modes generally have only a limited dependence on actuator location.

The greatest dependence observed in this study occurred for the n = 1 upstream mode,

which varies in magnitude by only a factor of three when the piston is moved along the

suction surface. It would seem, therefore, that no "rule of thumb" conclusions about piston

placement can be drawn, and that while an optimization of locations could be performed,

the resulting improvement in control displacements is not likely to be dramatic.
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Least Squares Minimization

To illustrate the effects of the least squares minimization solution given in Eq. (3.6) and

the weighted least squares solution given in Eq. (3.8), consider the same 3 BPF case as above,

which contains four propagating acoustic response waves. Assume now that there are only

two pistons available for control. The two pistons selected for demonstration of the least

squares concept are the ones used to achieve complete cancellation for the 2 BPF excitation.

Recall that in that case, the pistons each had length 0.1, and were centered at x = 0.2 on

the suction surface and x = 0.8 on the pressure surface, respectively.

The least squares minimization is applied by solving Eq. (3.6), which yields the complex

amplitudes r I = (-0.4830 x 10 -s, -0.4022 x 10 -4) and r2 = (-0.7891 × 10 -4, -0.8567 x 10-s).

The acoustic contours for this case are shown in Fig. 4.4a. With the control applied, the

changes in the magnitudes of each propagating response wave are shown in Table 4.2. The

magnitude of the net propagating response vector IIpRll has been reduced by approximately

28.4% overall, which corresponds to a decrease in the circumferentially averaged SPL of
about 3 dB.

To demonstrate the weighted least squares minimization procedure, a weighting matrix

is chosen to require complete cancellation of both downstream modes. The required control

displacements for this case are then r× = (-0.5216x 10 -3 , 0.3196 × 10 -3 ) and r: = (-0.2631×

10-3,0.2343 x 10-3). Acoustic contours for this case are shown in Fig. 4.4b. Note that the

downstream flow field is completely quiet, while the upstream response has been increased

significantly. The results are summarized in Table 4.3.

These results are dramatic, in that, although the downstream acoustic response waves

have been virtually eliminated, the magnitudes of the upstream response waves have in-

creased by almost two orders of magnitude. An examination of Fig. 4.3 reveals the reason

for the strong upstream response. In the figure, it is clear that the downstream acoustic

response waves have uniformly lower magnitudes than the upstreaxn response waves, when

excited by a unit amplitude control excitation. Consequently, a relatively large control

displacement is required to achieve a large enough response to cancel the undesired down-

stream modes. This large control surface displacement is then multiplied by the far greater

sensitivity of the upstream modes to yield a strong upstream response.

Leasts Squares Minimization

3 BPF with 2 Pistons

Magnitudes of Each Propagating Acoustic Response Mode, IlPn,nll

No control Control Percent Change

0.4550 × 10 -3 0.2738 × 10 -a -39.8%

0.6182 × 10 -3 0.3931 × 10 -3 -36.4%

0.2674 × 10 -a 0.2872 × 10 -3 +7.40%

0.9319 × 10 -a 0.6876 × 10 -a -26.2%

Table 4.2: Least squares minimization of the net acoustic response, with four propagating

acoustic response modes and only two control surfaces.
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Figure 4.4: Weighted least squares minimizations. (a) Least squares solution with two pistons

and four modes. (b) Downstream cancellation only. (c) Upstream cancellation only.

This suggests that if the weighting matrix is chosen so that only the upstream modes

are cancelled rather than the downstream modes, the overall result will not be as severe.

Application of the control analysis reveals that this is indeed the case, and acoustic contours

for this case are shown in Fig. 4.4c. The required control displacements are rl = (-0.1293 x

10 -4, -0.3205 x 10 -4) and r2 = (-0.3094 x 10-4,0.3616 x 10-4), and the changes in the

response modes are shown in Table 4.4. The upstream response modes respond more readily

to the control, and this is reflected in the fact that even though the downstream modes were

ignored in the weighted analysis in this case, one of them actually decreased in magnitude

by almost 25%.

The conclusion to be drawn, therefore, is that in each case where control is to be applied

and there are not enough pistons available for complete cancellation, it is important to
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WeightedLeastsSquaresMinimization

3 BPF with 2 Pistons

DownstreamCancellation Only

Magnitudes of EachPropagatingAcoustic ResponseMode, IIPR,,_II

n

1

2

3

4

No control Control Percent Change

0.4550 × 10 -3 0.1404 × 10 -1 +2986%

0.6182 × 10 -3 0.8098 × 10 -2 +1210%

0.2674 × 10 -3 0.2066 × 10 -6 -99.92%

0.9319 × 10 -3 0.3232 × 10 -6 -99.97%

Table 4.3: Weighted least squares minimization cancelling the downstream acoustic response

modes.

Weighted Leasts Squares Minimization

3 BPF with 2 Pistons

Upstream Cancellation Only

Magnitudes of Each Propagating Acoustic Response Mode, I]pR,,,II

n No control Control Percent Change
0.4550 × 10 -3

0.6182 × 10 -3

0.2674 × 10 -3

0.9319 × 10 -3

0.1165 > 10 -6

0.2156 × 10 -6

0.2001 x 10 -3

0.9989 × 10 -3

-99.95%

-99.97%

-24.98%

+7.190%

Table 4.4: Weighted least squares minimization cancelling the upstream acoustic response
modes.

examine the behavior of each propagating acoustic response mode to the control.
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5. Conclusions

This report presents a combined analytical/computational investigation of sound gener-

ation in cascades, and the subsequent active control of the acoustic responses through the

use of blade-surface actuators. To ascertain the proper dimensional magnitudes of represen-

tative acoustic response, an existing fan wake model was analyzed to determine appropriate

unsteady vortical and entropic excitations to a downstream FEGV. The magnitudes of the

excitations depend upon the geometry of the fan stage, the wheel speed and exit mean flow

of the rotor, and the shape, centerline velocity defect, and half-width of the rotor wakes.

Examples of the generation of acoustic response waves were presented by applying vorti-
caJ excitations at the inlet of the FEGV, and solving the governing steady and first-order

unsteady flow equations numerically using the LINFLO analysis.

At a given frequency and interblade phase angle the form of the acoustic response of

the FEGV, i.e., the wavenumbers, attenuation constants, and propagation directions of the

far-field acoustic response waves, is independent of the means of excitation. Therefore, the

acoustic responses due to a set of control surface oscillations on the FEGV blades are of the

same form as those due to an external excitation. The complex amplitudes of the control

surface motions can be related to the complex amplitudes of the undesired propagating

acoustic response waves through a set of simultaneous linear equations. If the number of

available control surfaces is equal to the number of propagating acoustic response waves, this

system of equations can be solved exactly, resulting in a set of control displacements that

completely cancel the noise. Examples of complete cancellation at twice and three times

BPF were shown.

If the number of acoustic response waves exceeds the number of control surfaces, then

the magnitude of a net propagating acoustic response vector provides a convenient measure

of the effectiveness of the control. A least squares minimization procedure minimizes this

quantity, which is directly related to the circumferentially averaged sound pressure level.

A weighting matrix has also been incorporated into the control analysis, to allow selective
cancellation of the acoustic response waves. An example of the least squares minimization

procedure was presented, as well as cases where the noise was completely eliminated in either

the upstream or the downstream flowfield of the FEGV.

The magnitude of each propagating acoustic response wave has a unique dependence

upon piston location. Consequently, no clear "rule of thumb" exists for piston placement,
which is therefore case dependent. A degree of relative insensitivity of some of the modes

to piston location was also observed in the cases studied, which implies that a complex

optimization procedure to determine the piston locations that lead to minimum required

control displacents is not likely to result in a dramatic improvement.
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List of Symbols

All physical parameters listed below are dimensionless. Lengths have been scaled with

respect to blade chord, time with respect to the ratio of blade chord to upstream freestream

flow speed, density with respect to its upstream freestream value, velocity with respect to

the upstream freestream flow speed, and entropy with respect to the fluid specific heat at

constant pressure. The number(s) in parentheses at the end of each symbol description

indicates an equation in which the symbol appears.

Roman

,A-oo

A

A

a0

B

B

e

F

f(N')

G

Mr

f-I

H

i

K

Constant vector, (2.28).

Speed of sound propagation in steady background flow.

Coefficient matrix in control equations.

Constant, (2.30).

Moving blade surface.

Blade mean position.

Section drag coefficient, (2.9).

Unit vector.

Complex function of mean-flow stream function, (2.30).

Wake profile shape function, (2.7).

Cascade gap vector (= G%), Fig. 2.1.

Total enthalpy, (2.13).

Total enthalpy in steady background flow.

Static enthalpy, (2.13)

Static enthalpy in steady background flow.

Imaginary unit.

Number of control surfaces per blade.
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M

m

P

P

p

pR

r

rk

SPL

t

(T',N')

It + , U +

V

Axial and circumferential wave numbers.

Mach number in steady background flow.

Blade number index

Pressure.

Pressure in steady background flow.

First-order unsteady pressure.

Complex amplitude of first-harmonic unsteady pressure.

Vector containing complex amplitudes of the propagating

acoustic response waves.

Root mean square pressure, (3.9)

Surface (blade or wake) displacement vector, (2.17).

Complex amplitude of surface (blade or wake) displacement

vector, (2.17); vector of complex amplitudes of actuator displacements, (3.1).

Complex amplitude of displacement of kth actuator.

First-order unsteady entropy, (2.14).

Complex amplitude of first-harmonic unsteady entropy, (2.16).

Sound pressure level, (3.9).

Time.

Coordinates tangential and normal to the exit
flow direction of the rotor.

Components of perturbation velocity in Fig. 2.2 tangential

and normal to the inlet mean flow velocity of the stator.

Velocity.

Velocity in steady background flow.

First-order unsteady velocity.
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Vw

Vdef

v

VR

V,

W

W

W

X

x

x,y

Greek

A

6

¢

Wheel velocity of rotor, = Vwe,/, Fig. 2.1

Wake velocity defect, (2.6)

Magnitude of wake edge velocity, (2.11)

Minimum wake velocity, (2.6)

Complex amplitude of first-harmonic unsteady velocity.

Complex amplitude of first-harmonic rotational unsteady velocity.

Complex amplitude of first-harmonic source-term unsteady velocity.

Moving wake surface.

Wake mean position.

Weighting matrix for control equations, (3.7)

Lagrangian coordinate vector.

Position vector.

Cartesian coordinates along and normal to mean position of blade chord,

Fig. 2.1.

Acoustic attenuation constant.

Fluid specific heat ratio.

Drift function.

Wake half-width, (2.10)

First-order unsteady vorticity.

Complex amplitude of first-harmonic unsteady vorticity.

Cascade stagger angle, Fig. 2.1.

Wave number vector.
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o"

T

¢

¢.

qJ

tM

Mc_thematical

b/Dt

D/Dt

Im{ }

Re{)

V

[!

<>

II II

Cascade axial and circumferential Cartesian coordinates, Fig. 2.1.

Density.

Density in steady background flow.

First-order unsteady density.

Interblade phase angle.

Unit tangent vector, (2.31).

Velocity potential for inviscid steady background flow.

Velocity potential for first-order inviscid unsteady flow.

Complex amphtude of first-harmonic unsteady velocity potential.

Complex amplitude of first-harmonic convected potential.

Stream function for inviscid steady background flow.

Steady flow angle, Fig, 2.1.

Temporal frequency.

Convective derivative operator.

Convective derivative operator based on mean-flow velocity.

Imaginary part of { }.

Real part of { }.

Gradient operator.

Change in a flow quantity across a surface of discontinuity, (2.32).

Time average, (3.10)

Magnitude of a vector.
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Subscripts

B Reference blade surface.

exc, R, ctrl Excitation, response, control.

N, T, z, r/

and

Indicates direction: N -- normal to inlet freestream direction,

T -- parallel to inlet freestream direction, z -- out from the

page, r/-- cascade "circumferential" direction, and

-- cascade axial direction.

-, + Axial locations at finite distance upstream and downstream from blade

row; point of intersection ((_, 77_) of axial line ( = __ and

reference blade stagnation streamline.

Too Far upstream/downstream freestream value of a steady flow variable,

Fig. 2.1; far upstream/downstream value of an unsteady flow variable.

Superscripts

Quantity associated with rotor.

Steady background flow quantity;

Circumferential average (3.14)

Time-dependent flow variable.

H
Hermitian (conjugate-transpose) of a matrix.

Complex conjugate, (3.13).
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